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Ultrafast two-dimensional infrared �2D-IR� vibrational echo spectroscopy can probe structural
dynamics under thermal equilibrium conditions on time scales ranging from femtoseconds to
�100 ps and longer. One of the important uses of 2D-IR spectroscopy is to monitor the dynamical
evolution of a molecular system by reporting the time dependent frequency fluctuations of an
ensemble of vibrational probes. The vibrational frequency-frequency correlation function �FFCF� is
the connection between the experimental observables and the microscopic molecular dynamics and
is thus the central object of interest in studying dynamics with 2D-IR vibrational echo spectroscopy.
A new observable is presented that greatly simplifies the extraction of the FFCF from experimental
data. The observable is the inverse of the center line slope �CLS� of the 2D spectrum. The CLS is
the inverse of the slope of the line that connects the maxima of the peaks of a series of cuts through
the 2D spectrum that are parallel to the frequency axis associated with the first electric field-matter
interaction. The CLS varies from a maximum of 1 to 0 as spectral diffusion proceeds. It is shown
analytically to second order in time that the CLS is the Tw �time between pulses 2 and 3� dependent
part of the FFCF. The procedure to extract the FFCF from the CLS is described, and it is shown that
the Tw independent homogeneous contribution to the FFCF can also be recovered to yield the full
FFCF. The method is demonstrated by extracting FFCFs from families of calculated 2D-IR spectra
and the linear absorption spectra produced from known FFCFs. Sources and magnitudes of errors in
the procedure are quantified, and it is shown that in most circumstances, they are negligible. It is
also demonstrated that the CLS is essentially unaffected by Fourier filtering methods �apodization�,
which can significantly increase the efficiency of data acquisition and spectral resolution, when the
apodization is applied along the axis used for obtaining the CLS and is symmetrical about �=0. The
CLS is also unchanged by finite pulse durations that broaden 2D spectra. © 2007 American Institute
of Physics. �DOI: 10.1063/1.2772269�

I. INTRODUCTION

Ultrafast two-dimensional infrared �2D-IR� vibrational
echo experiments probe fast dynamics in condensed matter
systems with exceptional detail. They have recently been ap-
plied to study the hydrogen bond network of water,1–3 the
equilibrium dynamics of aqueous and membrane bound
proteins,4–6 ultrafast exchange and isomerization
dynamics,7–10 and bath mediated solute structure
fluctuations.11,12 2D-IR vibrational echo spectra are acquired
by heterodyne detection of the stimulated vibrational echo
wave packet. They report the time dependent frequency evo-
lution of an ensemble of chromophores as the molecule-bath
system undergoes equilibrium structural fluctuations. In a
2D-IR vibrational echo experiment, three ultrafast mid-IR
pulses with experimentally controlled delay times generate
and manipulate a coherent superposition of the probe’s
ground and first two excited vibrational states. The time be-
tween pulses 1 and 2 is � �the first coherence period�, and the
time between pulses 2 and 3 is Tw �the population period�.
The vibrational echo pulse is generated after pulse 3 at a time
�� �the second coherence period�. 2D vibrational echo spec-
tra are obtained by scanning � at fixed Tw.

During the first coherence period, the molecules are fre-
quency labeled. During the population period, the frequency-
labeled molecules can evolve to different frequencies �spec-
tral diffusion� because of microscopic molecular events.
During the second coherence period, the final frequencies of
the frequency-labeled molecules are read out. A 2D spectrum
is obtained with the initial labeled frequencies as one axis
and the final frequencies of the molecules as the other axis. A
set of such 2D spectra is measured as a function of Tw. By
analyzing the amplitude, position, and peak shapes of the 2D
spectra, detailed information on structure and dynamics of
the molecular system is determined. Spectral diffusion re-
sults in changes in peak shapes as a function of Tw.1,13 Ap-
pearance of off-diagonal peaks results from incoherent and
coherent population transfers by anharmonic interactions14,15

or chemical exchange.8 Off-diagonal peaks occurring at Tw

=0 can arise from coupling of different vibrational modes.16

Vibrational population relaxation and molecular reorientation
lead to decay of the amplitudes of all peaks.4,8,17

A key link between experimental observables and the
underlying molecular and intermolecular structural fluctua-
tions is the frequency-frequency correlation function �FFCF�,
also known as the vibrational solvation correlation function.
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Within conventional approximations,18 the FFCF captures
the frequency response of a vibrational mode to the bath
dynamics, where the bath can be a solvent or, for systems
such as proteins, the protein itself. In addition, the FFCF
provides a key connection between 2D-IR vibrational echo
experiments and molecular dynamics simulations.13,19,20

However, the highly nonlinear relationship between the
FFCF and spectroscopic observables significantly compli-
cates the extraction of the FFCFs from 2D-IR spectra. To
obtain the FFCF from experimental data, a trial FFCF is
generally parameterized as a combination of decaying func-
tions, and spectroscopic observables are calculated from a
response function formalism that was developed by Muka-
mel and co-workers.18,21–23 A nonlinear fitting routine is em-
ployed to vary the multiple FFCF parameters to obtain agree-
ment between the calculated spectra and the experimental
spectra. The numerical problem is greatly increased when
finite pulse durations need to be included as a set of three
time ordered integrals. The computational complexity and
questionable convergence of multiparameter nonlinear fitting
routines has spurred the development of simpler methods
that try to obtain the FFCF directly from experimental
data.24,25

Increasing interest in heterodyne detected 2D-IR vibra-
tional echo spectroscopy has led to various approaches for
obtaining the 2D-IR line shape equations analytically.26–28

Among these, Kwac et al. included spectral diffusion effects
in their line shape equation for the narrow band pump-
broadband probe IR experiments. In addition to the standard
cumulant expansion and Condon approximations, a short
time approximation was assumed for the two coherence pe-
riods. Using this line shape function, the time dependent
slopes of the nodal plane of 2D-IR spectra were proven to be
proportional to the normalized FFCF.28 More recently, Rob-
erts et al. showed that, in 2D-IR vibrational echo experi-
ments, the ellipticity of the band shape is also proportional to
Tw dependent portion of the FFCF.29 Both methods indepen-
dently derived the same line shape function that is the prod-
uct of two Gaussians whose widths change with increasing
spectral diffusion. 2D spectra invariably have a motionally
narrowed component that is Tw independent. Neither ap-
proached dealt with extraction of the motionally narrowed
component.

The characteristic Tw dependence of an inhomoge-
neously broadened 2D-IR band caused by spectral diffusion
is a change in shape from elongation along the diagonal axis
at short Tw �waiting time� toward a symmetric band at long
waiting time, as shown in Figs. 1�a� and 1�b�. The �� axis is
the axis of the first radiation field-matter interaction, and the
�m axis is the axis of the third interaction and vibrational
echo emission. Besides fitting a set of 2D-IR spectra and
listing the parameters that define the FFCF, the change in the
2D spectral band shape can be presented in other ways. For
example, the change in the band shape can be described in
terms of one-dimensional cuts through the data parallel to the
�� axis. Projection of this cut onto the �� axis has a line
shape with a width that is called the dynamic linewidth.1,13

Another method is to obtain linewidth from cuts taken per-
pendicular to the diagonal �antidiagonal� and along the diag-

onal to form the closely related functions, the eccentricity30

or ellipticity.29 In practice, the determination of these line-
widths may be difficult because linewidths are very sensitive
to experimental noise and errors that may result from inad-
equate sampling or Fourier transform truncation artifacts.

Rather than attempting to quantify changes in peak
widths, we propose a new method that reports on both spec-
tral diffusion and the FFCF by tracking changes in the fre-
quency dependent positions of the peak maxima of slices
through the 2D-IR data. The observable is the inverse of the
center line slope �CLS� of the 2D spectrum, which varies
from a maximum of 1 to 0 as spectral diffusion proceeds.
The CLS is the inverse of the slope of the line that connects
the maxima of the peaks of a series of cuts through the 2D
spectrum that are parallel to the �� frequency axis. A key
feature of the proposed method is that it eliminates the need
for line shape analysis and the possible practical artifacts
inherent therein.

The necessity of performing numerical Fourier trans-
forms to obtain 2D-IR spectra imposes conditions on the data
acquisition of the time-domain interferograms. To avoid fre-
quency aliasing in 2D frequency space, a minimum sampling
interval, the Nyquist interval, is required for the maximum
frequency which is to be resolved.31 Therefore, points are
taken with a few femtosecond intervals, and the time to col-
lect an interferogram can be relatively long. However, trun-
cation of the interferogram is not an option if accurate line
shapes are required because truncation artifacts can make

FIG. 1. �a� Calculated 2D-IR vibrational echo spectrum of HRP-CO red
state at Tw=0.2 ps. The parameters used in the calculation are listed in the
Table I as HRP red experiment. �b� Calculated HRP-CO 2D-IR spectrum at
Tw=60 ps. The heavy lines in �a� and �b� are the center lines, which connect
the peak position �maximum value of the projection onto the �� axis� for
cuts at each �m. �c� and �d� are the normalized projected spectra for �a� and
�b� at several �m. �c� shows the distribution of peak positions at short Tw. In
�d�, all of the peak positions are identical corresponding to the vertical line
in �b�.
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peaks broader or add side lobes, which can interfere with
neighboring peaks. To avoid truncation artifacts, it is neces-
sary to take data until the interferogram has decayed to zero,
necessitating long scans and good signal-to-noise ratios at
long times when the signal has decayed almost to zero. In
2D-IR vibrational echo experiments with more than one
peak, the scanning time is always determined by the narrow-
est peak.

In analogy to the wide array of data processing tech-
niques developed for handling complex 2D-NMR data, ac-
quisition of 2D-IR vibrational echo spectra can be enhanced
by applying data processing techniques to the time-domain
interferograms.32 Apodization, or windowing, is one of the
most important procedures and is routinely employed for
slowly decaying interferograms and to spectrally resolve
overlapping transitions in NMR.33,34 Apodization usually in-
volves multiplication of an interferogram by a simple win-
dowing function before numerical Fourier transformation.
The primary goal of this procedure is to improve the signal-
to-noise ratio or spectral resolution in the resulting 2D
spectrum.35 Finite data acquisition time and the resulting
truncation of the interferogram effectively define an apodiza-
tion window that may lead to spectral artifacts and line
broadening in the frequency domain. Numerical apodization
performed with a decaying window function can smooth the
abruptly truncated edge of the interferogram and reduce
spectral leakage around the main peak.

Apodization can reduce data acquisition time and im-
prove the overall signal-to-noise ratio by focusing the data
acquisition effort on those portions of the interferogram
where signal is still relatively strong. However, these sub-
stantial advantages are mitigated by the fact that a rapidly
decaying window function will significantly alter the ob-
served 2D-IR vibrational echo band shape. Numerical decon-
volution of the true band shape from the effect of the win-
dowing function is frequently difficult and is generally
numerically unstable.36 However, the CLS method does not
depend on line shapes to obtain the time dependent spectral
diffusion, but rather the inverse slope of the center line. The
center line is determined by the peak maxima of cuts through
the 2D band. Although the shape of the band is changed by
apodization, it will be demonstrated below that the positions
of the peak maxima and, therefore, the CLS is not affected
by apodization provided that the apodization is performed
along the frequency axis used to obtain the CLS and the
apodization function is symmetrical about �=0. Furthermore,
the CLS is not influenced by finite pulse durations.

2D-IR vibrational echo spectra need to be “phased” cor-
rectly to obtain an essential absorptive spectrum. Obtaining
the absorption part of the 2D-IR spectrum using the dual-
scan method37 combined with proper phasing using the
pump-probe projection theorem,38 corresponds to the phase
correction in NMR. It is demonstrated below that apodiza-
tion does not affect the procedures used to obtain a properly
phased absorptive 2D-IR spectrum.

II. THEORETICAL DEVELOPMENT

A. Response functions for 2D-IR spectra in the short
time approximation

Here, we will derive the line shape function for the
2D-IR vibrational echo experiments using the short time ap-
proximation. A similar approach has already been employed
by other groups in related contexts.25,28,29 It is included here
so that the derivation of the important results is complete and
to include the effects of lifetime and orientational relaxation,
which have not been treated previously. The linear and third
order response functions using diagrammatic perturbation
theory have been presented.18 The linear IR absorption spec-
trum can be expressed as a Fourier transform of the linear
response function, R1�t�,

R1�t� = ��0,1�2e−i��0,1�t exp�− g1�t��exp�− t/3Tor�

�exp�− t/2T1� , �1�

where �0,1 is the transition dipole for the ground vibrational
state, 0, to the first vibrationally excited state, 1. ��0,1� is the
ensemble average 0–1 transition frequency, and the vibra-
tional lifetime and orientational relaxation are included phe-
nomenologically via T1 and Tor, respectively. The line shape
function g1�t� is

g1�t� = 	
0

t

d�2	
0

�2

d�1���1,0�t���1,0�0�� , �2�

where ���1,0��1���1,0�0�� is the frequency-frequency corre-
lation function �FFCF� for the 0-1 transition frequency. An
FFCF that is a sum of exponential terms has been used to
describe a wide variety of experimental systems.1,4,13,39,40 It
has also been found that the vibrational systems that have
been studied contain a motionally narrowed component in
addition to dynamics that are not motionally
narrowed.1,4,13,40,41 Therefore, we will consider the form of
the FFCF to contain a motionally narrowed term as well as a
sum of exponential terms. Motional narrowing can be repre-
sented as delta function in the FFCF. Then the FFCF has the
form

C1�t� = ���1,0��1���1,0�0�� =
��t�
T2

* + 

i

�i
2 exp�− t/�i� ,

�3�

where T2
* is the pure-dephasing time, which is homogeneous

at all times. �i is the frequency fluctuation amplitude and �i

is the correlation time of the ith component. Because the
contribution to line broadening from the finite vibrational
lifetime and orientational relaxation are also purely homoge-
neous, these can be combined with the pure dephasing into a
single homogeneous dephasing term. Then the FFCF is

C1�t� = ���1,0��1���1,0�0�� =
��t�
T2

+ 

i

�i
2 exp�− t/�i� ,

�4�

where

124503-3 2D-IR vibrational echo spectroscopy J. Chem. Phys. 127, 124503 �2007�



1

T2
=

1

T2
* +

1

2T1
+

1

3Tor
. �5�

This substitution significantly simplifies the subsequent treat-
ment of the linear and third-order response functions while
simultaneously including the effects of the finite lifetime and
orientational relaxation in the overall treatment.

Within the form of the FFCF given in Eq. �4�, the first-
order response function is given by

R1�t� = ��0,1�2e−i��0,1�t exp�− g1�t�� . �6�

The third-order response function for the quantum pathways
responsible for the stimulated vibrational echo signal are
given by

R1
3�t3,Tw,t1� = R2

3�t3,Tw,t1�

= ��0,1�4e−i��0,1��−t1+t3�

�exp�− g1�t1� + g1�Tw� − g1�t3� − g1

��t1 + Tw� − g1�Tw + t3� + g1�t1 + Tw + t3��

� exp�− Tw/T1��1 + 0.8 exp�− Tw/Tor�� ,

R3
3�t3,Tw,t1� = − ��0,1�2��1,2�2e−i���0,1��−t1+t3�−�t3�

�exp�− g1
*�t1� + g2�Tw� − g3�t3�

− g2�t1 + Tw� − g2�Tw + t3�

+ g2�t1 + Tw − t3��

�exp�− Tw/T1��1 + 0.8 exp�− Tw/Tor�� ,

�7�
R4

3�t3,Tw,t1� = R5
3�t3,Tw,t1�

= ��0,1�4e−i��0,1��t1+t3� exp�− g1�t1� − g1�Tw�

− g1�t3� + g1�t1 + Tw� + g1�Tw + t3�

− g1�t1 + Tw + t3��

�exp�− Tw/T1��1 + 0.8 exp�− Tw/Tor�� ,

R6
3�t3,Tw,t1� = − ��0,1�2��1,2�2e−i���0,1��t1+t3�−�t3�

�exp�− g1�t1� − g2
*�Tw� − g3�t3�

+ g2
*�t1 + Tw� + g2

*�Tw + t3� − g2
*�t1 + Tw + t3��

�exp�− Tw/T1��1 + 0.8 exp�− Tw/Tor�� .

In the above, �1,2 is the transition dipole matrix elements for
the 1-2 vibrational transitions and � is the vibrational anhar-
monicity. g2�t� represents cross correlation between the fun-
damental and excited transition frequency,

g2�t� = 	
0

t

d�2	
0

�2

d�1���2,1�t���1,0�0�� . �8�

g3�t� is the autocorrelation of the excited transition fre-
quency,

g3�t� = 	
0

t

d�2	
0

�2

d�1���2,1�t���2,1�0�� . �9�

These two functions can be different from g1�t� and also
from each other in a three level vibrational system. The
quantum correction to the time-correlation function42 is not
considered here. Therefore, the FFCF is a real quantity and
gi�t� are also real.

The first three response functions represent rephasing
pathways �R� and the last three are nonrephasing pathways
�NR�. There are actually two more response functions �re-
verse echoes� that occur only when the time ordering is such
that Tw is negative, that is, pulse 3 comes before pulses 1 and
2. In the dual-scan method used to obtain absorptive 2D-IR
vibrational echo spectra,37 this never occurs. Then the addi-
tional pathways can only contribute for Tw’s that are approxi-
mately equal to or less than the pulse duration, and all three
pulses overlap in time. Generally in this situation, the sample
will produce a nonresonant contribution that arises from the
electronic polarizability of all of the molecules in the sample,
solutes and solvent. The nonresonant signal usually obscures
or distorts the resonant single. For these reasons, the two
reverse echo response functions are not included in the
analysis.

An absorptive 2D-IR signal, S2D, is obtained via the
dual-scan method43 according to

S2D���,�m,Tw� � Re�R̃R���,�m,Tw� + R̃NR���,�m,Tw�� ,

�10�

where R̃R and R̃NR are defined as

R̃R���,�m,Tw� = 	
0

	

dt1	
0

	

dt3 exp�i�mt3 − i��t1�

� RR�t1,Tw,t3� ,

�11�

R̃NR���,�m,Tw� = 	
0

	

dt1	
0

	

dt3 exp�i�mt3 + i��t1�

� RNR�t1,Tw,t3� .

From Eq. �7�, it is evident that the lifetime and orienta-
tional relaxation terms cause the intensity of the various re-
sponse functions to decay as Tw is increased. These decay
terms can be effectively removed by normalizing the indi-
vidual Tw dependent 2D-IR spectra. In addition, these terms
are independent of the Fourier transformation along t1 and t3

�see Eq. �11��. Thus, the effect of the lifetime and orienta-
tional relaxation terms can be dropped to further simplify the
response functions, but it should be emphasized that this nor-
malization does not affect the overall 2D-IR line shape. As
shown in Eq. �5�, the combination of a motionally narrowed
term �see Eq. �4�� with the lifetime and orientational relax-
ation produces a single Lorentzian contribution to the line
shape.

Usually, an analytical form of the frequency domain re-
sponse functions cannot be obtained because the line shape
functions gi�t� are a complicated set of nested integrals of
exponential functions. Instead, numerical calculations are
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used to obtain the frequency domain response functions.
During the numerical calculations, the direct relation be-
tween the signal and FFCF is lost. Multiparameter nonlinear
fitting methods are generally used to obtain the FFCF from
frequency domain spectra.

Using a short time approximation for the two coherence
periods,28 the gi�t� can be expanded with a Taylor expansion
to second order in time, and the line shape functions and
third-order response functions become analytically tractable.
For example, the first two third-order response functions be-
come

R1
3�t3,Tw,t1� = R2

3�t3,Tw,t1�

= ��0,1�4e−l��0,1��−t1+t3� exp�−
C1�0�

2
t1
2 −

t1

T2

+ C1�Tw�t1t3 −
C1�0�

2
t3
2 −

t3

T2
� , �12�

where C1�t� is given in Eq. �4�. However, analytical solutions
for the frequency domain response still cannot be derived
from equations of this form. Therefore, we temporarily take

1/T2=0. This approximation and the property of Dirac delta
function guarantee that C�t� no longer has a motionally nar-
rowed component. Below, we will introduce a procedure for
recovering the motionally narrowed component from experi-
mental data. The resulting response functions have been pre-
sented elsewhere,25,28,29 so only final result will be summa-
rized here.

For the pathways that involve only the 0 and 1 vibra-
tional levels �equivalent to ground state bleaching and stimu-
lated emission in a pump-probe experiment�,

R̃0→1
3 ���,�m,Tw�

=
4


�C1�0�2 − C1�Tw�2�1/2

�exp−
C1�0��m

2 − 2C1�Tw��m�� + C1�0���
2

2�C1�0�2 − C1�Tw�2�
� .

�13�

For the pathways that result in a 1-2 coherence following the
third interaction �excited state absorption�, three different
FFCFs are involved so the equation becomes more complex.

R̃1→2
3 ���,�m,Tw� =

− 2
�2

�C1�0�C3�0� − C2�Tw�2�1/2exp−
C1�0���m + ��2 − 2C2�Tw���m + ���� + C3�0���

2

2�C1�0�C3�0� − C2�Tw�2�
� , �14�

where � is defined as �01/�12 which is �2 under harmonic
approximation. Also, to reduce the complexity of the equa-
tion, the average transition frequency ��01� is taken as 0. In
addition to C1�t� defined in Eq. �3�, two other correlation
functions, C2�t� and C3�t�, are needed for the three level
system. The former is the cross correlation function between
the 0-1 and 1-2 transition frequencies. The latter is the auto-
correlation of the 1-2 transition frequency. The 0→1 bands
in the 2D-IR vibrational echo spectra only depend on C1�t�.
Hence, the FFCF of the fundamental frequency can be ob-
tained by analyzing the 0→1 transition even though C2�t�
and C3�t� may be different from C1�t�.

Using the above form of the line shape function the ana-
lytical relationship between the FFCF and all 2D-IR experi-
mental observables can be examined. Earlier studies have
proposed the dynamic linewidth,13 the eccentricity,30 and the
slope of nodal plane41 as simplified experimental observables
related to the FFCF. These observables conveniently summa-
rize 2D-IR spectra in a reduced one-dimensional form and
can increase the accuracy and efficiency of nonlinear fitting
routines. However, these fitting routines still require response
function calculations with a parameterized model FFCF
treated as a multivariable fitting parameter. To avoid these
difficulties, methods for extracting the FFCF directly from
2D-IR spectra have begun to emerge. Recently, using the
short time approximation, the ellipticity of the 2D-IR line
shape was analyzed.29 Like the eccentricity, the ellipticity is

obtained from the widths of the diagonal and antidiagonal
cuts through the 2D-IR band. It was shown that, within the
short time approximation, the Tw dependent portion of the
FFCF could be recovered directly from the experimental
data. However, the method requires two linewidths at each
Tw, which can be subject to errors associated with determin-
ing line shapes. Also, a method for obtaining the motionally
narrowed contribution to the FFCF was not developed. The
CLS method is in the same spirit as the ellipticity approach
but, as discussed in Sec. I, has advantages of not requiring
linewidths and not being susceptible to influences on the line
shapes, such as apodization. In addition, a method for obtain-
ing the motionally narrowed contribution to the FFCF using
the linear spectrum and a relatively simple calculation has
been developed.

B. The center line slope

The change in shape of the 2D-IR spectrum caused by
spectral diffusion can be described in terms of the center line
slope. Figures 1�a� and 1�b� show model calculations for
Tw=0.2 ps and for Tw=60 ps, at which time spectral diffu-
sion is almost complete. The calculations are based on the
FFCF determined for the CO stretching mode of CO bound
at the active site of the enzyme horseradish peroxidase
�HRP�.30 The FFCF for HRP has the form given in Eq. �4�,
and will be used in detailed model calculations presented
below. The heavy lines are the center lines. At a given �m, a
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slice through the 2D spectrum parallel to the �� axis when
projected onto the �� axis is a spectrum. The peak of this
spectrum is one point on the center line. Taking many such
slices and determining the peak for each produces a set of
points. The line connecting the resulting points is the center
line. At short Tw, the center line has a significant slope. As Tw

increases, the 2D spectrum becomes more symmetrical. At
sufficiently long time, when spectral diffusion has sampled
all frequencies, the 2D band is symmetrical, and all cuts have
the same peak frequency, which is the frequency of the peak
of the linear IR absorption spectrum. The center line is ver-
tical �infinite slope�. Figures 1�c� and 1�d� show the spectra
�normalized� projected onto to the �� axis for several �m

slices. At short Tw �200 fs, Fig. 1�c��, there is a range of peak
positions, yielding a center line with a slope. At very long Tw

�60 ps, Fig. 1�d��, all of the peak frequencies are identical,
giving the vertical center line.

In the limit of complete spectral diffusion, the long time
limit, the 2D spectrum is symmetrical and the center line is
vertical. In the other limit, Tw=0, and in the absence of a
homogeneous component, the 2D spectrum is a thin line
along the diagonal. The center line would be at 45°. As dis-
cussed below, the FFCF is related to the inverse of the center
line slope. The inverse of the CLS has a maximum value of
1 at Tw=0 and goes to 0 in the long time limit. The maxi-
mum value of 1 can only occur in the absence of a homoge-
neous component. As the size of the homogeneous contribu-
tion increases, the initial value of the inverse of the CLS
decreases. �The inverse of the CLS will also be referred to as
the CLS.� The change in the center line as a function of Tw is
shown in Fig. 2�a�. The line with the smallest slope is for
Tw=0.2 ps, and the line with the largest slope is for Tw

=60 ps.
The relationship between the CLS �inverse of the center

line slope� and the FFCF can be derived using the approxi-
mate 2D-IR line shape functions given in Eqs. �13� and �14�.
Here, we will concentrate only on the 0-1 band in the 2D-IR
spectrum. The same procedure can be applied to the band
involving vibrational echo emission at the 1-2 transition fre-
quency. First, to define the slope of the line connecting the
peak positions, at least the peak maxima for two �m slices
are needed. One point is selected as the center frequency of
the 2D spectrum. This is the slice along �� at the �m which
corresponds to the peak frequency of the linear IR absorption
spectrum. The center frequency slice spectrum can be ex-
pressed as

R̃0→1
3 ���,0,Tw� =

4


�C1�0�2 − C1�Tw�2�1/2

�exp−
C1�0���

2

2�C1�0�2 − C1�Tw�2�
� . �15�

Clearly, this slice spectrum has a maximum at ��� ,�m�
= �0,0�. The other cut at �m=� has the spectrum projected
onto the �� axis of

R̃0→1
3 ���,�,Tw�

=
4


�C1�0�2 − C1�Tw�2�1/2

�exp−
C1�0��2 − 2C1�Tw���� + C1�0���

2

2�C1�0�2 − C1�Tw�2�
� .

�16�

Using the first derivative of this spectrum,

�R̃0→1
3 ���

Max ,� ,Tw� /���=0, the peak position of this slice is
��� ,�m�= �C1�Tw� /C1�0�� ,��= �C1

N�Tw�� ,��, where C1
N�Tw�

=C1�Tw� /C1�0� is the normalized FFCF. Therefore, the slope
of the line is

S�Tw� =
1

C1
N�Tw�

. �17�

Equation �17� is the important result. Within the short time
approximation, the normalized FFCF, C1

N�Tw�, is directly
proportional to the inverse of the center line slope, which we
refer to as the CLS. It should be emphasized that C1

N�Tw�
does not include a motionally narrowed component. The
change in slope reflects the Tw dependent spectral diffusion.
The 1/T2 contribution to the FFCF and 2D line shape is Tw

FIG. 2. �a� The progression of center lines showing the change in slope
toward the vertical spectral diffusion proceeds for increasing values of Tw.
�b� The CLS �inverse of the center line slopes� as a function of Tw for the
HRP-CO blue state �upper curve, closed squares� and the red state �lower
curve, open squares�.
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independent. In the next section, numerically calculated
2D-IR spectra using known FFCF input parameters are used
to verify this relationship, access its accuracy, and demon-
strate the procedure for recovering the Tw independent 1 /T2

contribution to the FFCF.

III. TESTING THE CLS METHOD

To check the validity of the CLS method, numerical cal-
culations of response functions were performed with known
FFCFs that were obtained from experiments by fitting the
experimental data with the full response function time de-
pendent diagrammatic perturbation theory method.21,22,44

First, the specific procedures to extract the FFCF will be
shown using the FFCFs from 2D-IR vibrational echo mea-
surements on the CO stretching mode of HRP.30 HRP is an
enzyme that can bind a variety of substrates. Without a
bound substrate, HRP displays two CO peaks in the FT-IR
spectrum because it exists in two conformational substates
related to the configuration of the distal residues. The FFCFs
for the two CO lines will be extracted using CLS from the
2D spectra. Second, the method for recovering the homoge-
neous contribution T2 and the absolute amplitudes of inho-
mogeneous components will be demonstrated by also utiliz-
ing linear IR absorption spectra. The HRP-CO system was
chosen because the FFCFs of the CO stretch of this protein
contain the various components discussed in connection with
Eq. �4�, including a motionally narrowed component, a rela-
tively slow spectral diffusion component, and a static com-
ponent. The HRP-CO line shapes are almost Gaussian, but
they are quite narrow with bandwidths of 10 and 15 cm−1. A
narrow peak gives rise to a slow decay time of the time-
domain signal as � is scanned, which makes this system a
stringent test of the short time approximation. Also the
2D-IR experimentally obtained FFCFs from the deuterated
hydroxyl stretching bands of phenol-OD in two solvents,
pure CCl4 and mesitylene, were used to test the CLS method
for systems that have almost homogeneously broadened
Lorentzian absorption bands.

The FFCFs for HRP-CO that we will try to duplicate
with CLS were obtained by iterative fitting of the 2D-IR
vibrational echo experiments with response function calcula-

tions of the Tw dependent 2D-IR spectra and the linear line
shapes.30 The protein is so large that orientational relaxation
can be neglected. The population relaxation times, T1, were
measured with IR pump-probe experiments.30 The two CO
absorption bands are referred to as the red state �lower ab-
sorption frequency, 1903.7 cm−1� and the blue state �higher
absorption frequency, 1932.7 cm−1�.30 Both FFCFs have the
form given in Eq. �4�. The slow exponential component for
the blue state is so slow that it appears as a constant on the
accessible time scale of the experiments ��5T1�. Therefore,
for the blue state, the last term in Eq. �4� is just �2

2. The
parameters obtained from the experiments are given in Table
I �labeled as experiment� and are used to calculate the 2D-IR
spectra. Because the lines are so narrow compared to the
bandwidth of the pulses used in the experiments, finite pulse
durations were not included in obtaining the FFCFs.30

As discussed above, a plot of the peak frequency ���
max�

at each �m point forms a line in two-dimensional frequency
space such as those shown in Fig. 2�a� for the HRP red state.
The slopes of such lines are determined and the inverse, the
CLS, is plotted versus Tw in Fig. 2�b� for both the blue state
�top curve� and the red state �bottom curve�. As can be seen
in Fig. 2�b�, the FFCFs for the two states are quite different.
The blue state decays to a constant, which shows that there is
a static component to the FFCF on the accessible time scale
of the experiment. The red state is decaying to zero, indicat-
ing that on the time scale of �100 ps all protein structural
configurations associated with the red conformational sub-
strate are sampled.

Another important feature of Fig. 2�b� is that neither of
the curves begins at 1. This immediately suggests that there
is a homogeneous term composed of a motionally narrowed
component, a lifetime term, and an orientational relaxation
term. As discussed in Sec. II A, the homogeneous component
was dropped, that is, 1 /T2=0, from the FFCF to derive the
analytical equations relating the CLS to the FFCF. The CLS
gives only the Tw dependent portion of the FFCF. The homo-
geneous contribution to the 2D-IR line shape does not de-
pend on Tw. CLS plots are the normalized FFCF without
homogeneous contributions. If there is no homogeneous con-
tribution, in general, the initial value of the CLS can still be

TABLE I. HRP FFCF input parameters from Ref. 40, and parameters determined from the CLS method as
discussed in the text.

T2 �ps� �2 �rad/ps� �2 �ps� �3 �rad/ps� �3 �ps� T1 �ps�

HRP red Experiment 7.5 0.58 1.5 1.06 21 8
CLS �norm� NA 0.07a 1.6 0.75a 21
CLS and
linewidth

3.9 0.32 1.6 1.05 21

CLS and
line shape

7.3 0.58 1.6 1.05 21

HRP blue Experiment 5.8 0.60 15 0.45 	 12
CLS �norm� NA 0.5a 15 0.31a 	

CLS and
linewidth

5.3 0.58 15 0.46 	

CLS and
line shape

5.7 0.6 15 0.46 	

aNormalized amplitude from normalized CLS, unitless, not rad/ps.
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somewhat smaller than 1, which is a result of the short time
approximation �see Appendix 1�. The error inherent in FFCF
caused by the short time approximation, which produces a
total amplitude for the Tw dependent portion of the FFCF
being a floor, is tested in the examples given below. Numeri-
cal simulations of CLS from FFCFs with various homoge-
neous contributions were used to see the effect of the inclu-
sion of homogeneous components. Procedures and results of
the numerical simulation are given in Appendix 2. Here the
procedures that are validated in Appendix 3 are applied.

Time constants and relative amplitudes of the FFCF
components are obtained by fitting the CLS to a trial func-
tion for the FFCF. A multiexponential decay function was
used. The CLS for the red state of HRP, open squares in Fig.
2�b�, is fit best by a biexponential function without an offset.
The relative amplitudes and decay time constants obtained
from fitting are listed as CLS �norm� in the Table I. The time
constants are reproduced essentially perfectly for both fast
and slow inhomogeneous components. In many tests, we
have determined that the time constants are always accurate.
The initial value of the CLS is 0.82, which is the sum of the
relative amplitudes of the two inhomogeneous components.

A homogeneous component decreases the initial value of
the CLS from 1. The difference between CLS at Tw=0 and 1
is related to the homogeneous contribution, to the FFCF �see
equation �4�� and the Lorentzian contribution, 1 /
T2, and to
the linewidth, full width at half maximum �FWHM�, of the
IR absorption spectrum. The initial value of CLS represents
the inhomogeneous contribution in line broadening of IR
spectrum. Within the short time approximation used to drive
the relationship between the FFCF and the CLS, the ampli-
tude of an inhomogeneous component with a very fast time
constant is decreased. Therefore, the CLS method cannot tell
the difference between the magnitude of a homogeneous
component and error introduced into the amplitude from a
very fast inhomogeneous component by the short time ap-
proximation. The extent of this error is tested in the ex-
amples presented here, and it is small.

For the red state of HRP, 82% of IR line is ascribed to
inhomogeneous broadening and the remaining 18% to the
homogeneous contribution �see Table I�. Using the procedure
that is shown to be a good approximation in Appendix 3, the
homogeneous line broadening, 1 /
T2, is obtained by the
product 0.18�FWHM of IR absorption spectrum, which
gives T2 in the FFCF �Eq. �4��. If the CLS can be fit as a
single exponential, that is, the inhomogeneous part of FFCF
is a single component, the amplitude of this factor is ob-
tained as �i=�0.82� �FWHM� / �2�2 ln 2�. In this formula,
2�2 ln 2�1/2 is required to change the FWHM of the IR ab-
sorption line into the standard deviation and the overall
square root is needed because relative amplitude from the
CLS involves the squares of absolute amplitudes.39 When
inhomogeneous part has multiple components, the entire in-
homogeneous broadening will be divided following the ratio
between the relative amplitudes, for example, for the red
state of HRP �see Table I, CLS �norm��, 0.07/ �0.07+0.75�
and 0.75/ �0.07+0.75�. Again the relative amplitudes from
the CLS are the ratio between the squares of amplitudes.
Therefore, the square of the amplitude of the 1.5 ps compo-

nent is �i
2= �0.07/0.82�� �FWHM/2�2 ln 2�2. To sum up

this procedure, the amplitude of an inhomogeneous compo-
nent can be estimated as �i=�ai� �FWHM� / �2�2 ln 2�. ai is
the relative amplitude obtained from fitting the Tw depen-
dence of the CLS. The results of this estimation are listed in
Table I as CLS and linewidth. The amplitude of the slow
component is accurate. The amplitude of the fast component
and T2 is about a factor of 2 off. The time constants are
correct, the amplitude of the slow component is correct, and
the other two factors are somewhat off. Given the simplicity
and ease of this procedure, which involves no response func-
tion calculations, the results are reasonable. This procedure is
not rigorously correct because FWHM of the IR spectrum is
the result of convolutions between the homogeneous and in-
homogeneous contributions. Simple division of FWHM will
lead to some error. However, as shown in Appendix 3, the
error is small in all cases from almost purely Lorentzian to
purely Gaussian lines. As shown in other examples below, if
a very fast inhomogeneous component does not exist, this
simple procedure is virtually quantitative.

With the simple procedure just presented, CLS cannot
completely distinguish the homogeneous broadening and the
initial part of inhomogeneous broadening, leading to the er-
rors in Table I CLS with linewidth. An inhomogeneous com-
ponent with a very fast time component will push this initial
decay into the homogenous component. The result is a de-
crease of the amplitude of the fast inhomogeneous compo-
nent and an increase of the homogenous dephasing time. The
true T2 is no less than the estimation using only the absorp-
tion linewidth, and the amplitude of a very fast inhomoge-
neous component cannot be smaller than the estimated am-
plitude. Very fast means that the decay constant is
comparable to the free induction decay time �see Appendix 1
for details�.

More accurate results can be obtained by employing a
more complicated but not difficult procedure. This procedure
fits the linear absorption spectrum rather than using percent-
ages of FWHM. The absorption spectrum is the Fourier
transform of the linear response function given in Eq. �6�.
The linear response function is found using the known pa-
rameters obtained from the CLS and the FWHM of the ab-
sorption spectrum. For the red state of HRP, there are three
exponential terms in the FFCF. Of these, the two time con-
stants and the amplitude of the slow component are known.
Only the homogenous component and the amplitude of the
fast decay component were treated as fitting variables in
FFCF for calculating the IR spectrum. The response function
was numerically Fourier transformed and compared to the
absorption spectrum obtained from the calculation using the
reported FFCF.30 Because there is no noise on the calculated
spectrum, the fit only used the line shape down to 20% of the
maximum amplitude. This cutoff prevented the possibility
that the fitting was determined by the low amplitude wings
of the spectrum that would not be accessible from a real
spectrum with noise. The two fitting variables are con-
strained to be larger than or equal to the values obtained
from the FWHM method. The upper limit is set using Eq. �5�
as T2�1/ �1/2T1+1/3Tor�. With these constraints, the linear
response function calculation is iterated to obtain the best fit
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to the experimental spectrum. The results are given in Table
I as CLS and line shape. The agreement between the experi-
mental values and the parameters obtained using CLS and
the line shape fitting is essentially perfect. The information
lost because of the short time approximation was recovered
using the IR spectrum and linear response function calcula-
tion even though the experimental spectrum was only fit
down the 20% of the peak value.

Table I also includes analysis of the HRP blue state.
Fitting the CLS shows that the FFCF has a slow component
and a constant component. The fact that the normalized CLS
amplitudes do not sum to 1 indicates that there is also a
homogeneous component. The decay times match the experi-
mental values. Because both of the inhomogeneous compo-
nents are slow, the simple FWHM linewidth method should
work well. As can be seen in Table I CLS and linewidth, the
results are actually quite close to the experimental values.
These are obtained without any complicated analysis. When
the line shape method is used, fitting the linear absorption
spectrum as described above produces virtually perfect
agreement with the experimental values, as shown in Table I
CLS and line shape.

The HRP absorption line shapes are narrow and almost
Gaussian with substantial inhomogeneous broadening. The
method was also tested using the experimental FFCF for the
OD stretch of HOD in pure water H2O.1,13 The absorption
spectrum is very broad, almost Gaussian with significant in-
homogeneous broadening.1,13,45 The CLS method works very
well, with agreement comparable to that displayed in Table I.
The method was also applied to a concentrated NaBr
solution.46 As another test approaching the opposite limit,
experimentally determined FFCFs of the OD stretch of
phenol-OD �the hydroxyl H replaced with D� in both CCl4
and mesitylene were used for the 2D-IR calculation.47

Phenol-OD displays very narrow and almost Lorentzian IR
spectra, implying that the absorption lines are almost homo-
geneously broadened.47 Both systems display 2D-IR vibra-
tional echo spectra with the characteristic starlike shape as-
sociated with nearly homogeneously broadened line.48 The
inhomogeneous contribution to the absorption line is small
and therefore the spectral diffusion does not have a great
impact on the 2D-IR line shapes.

The FFCFs were derived from the iterative fitting of the
2D-IR spectra and the linear IR line shapes to third-order and
linear response function calculations.47 The resulting FFCFs
show a large homogenous component and small inhomoge-
neous component.47 The homogenous component was as-
cribed to very fast density fluctuations in the first solvation
of the phenol, and the spectral diffusion to diffusive motions
of solvent molecules in the first solvent shell.47 The same
procedure used for the HRP protein was applied to extract
the FFCFs using the CLS method from the 2D-IR spectra.
All the input parameters for calculating 2D-IR spectrum are
listed in Table II experiment. For completeness, the lifetimes
and orientational decay times, measured using polarization
selective pump-probe experiments, are also given.47 These
do not come into the calculations but show that the homoge-
neous component is mainly composed of a motionally nar-
rowed contribution to the dynamic line shape, rather than
arising from the lifetime or orientational relaxation. The CLS
for both samples could be well fit with a single exponential
decay with an initial value of �0.2. The initial values show
that there is a very large homogenous contribution to the
lines. The CLS time constants for the two samples are accu-
rate. Both the simple FWHM linewidth method and the more
detailed line shape method produce the amplitudes and T2

values that are in excellent agreement with the experimen-
tally determined numbers.

Additional details relating to the simple FWHM method
are given in Appendix 3 and errors introduced by the short
time approximation are discussed in Appendix 1. The ampli-
tude factor is reasonably accurate using the FWHM method
if the decay time constant, �� �5�FID, where FID is the
free induction decay, and its duration is taken to be the FID
half-width.

IV. APODIZATION AND THE CLS

In NMR, a variety of numerical methods is used to im-
prove signal-to-noise ratios, resolutions, or data acquisition
times. One that is very useful is apodization or
windowing.33,35 Apodization involves multiplying an inter-
ferogram by a known simple function. A decaying function is
used to reduce data acquisition time and improve signal-to-

TABLE II. FFCF input parameters from phenol in CCl4, and parameters determined from the CLS method as
discussed in the text.

T2 �ps� �2 �rad/ps� �2 �ps� T2
a T1 Tor

Phenol-OD
in CCl4

Experiment 0.9 0.55 5 1.04 12.5 2.9
CLS �norm� NA 0.19a 5
CLS and
linewidth

0.88 0.52 5

CLS and
line shape

0.9 0.55 5

Phenol-OD
in mesitylene

Experiment 0.45 1.2 13 0.48 7.6 5.5
CLS �norm� NS 0.27a 13
CLS and
linewidth

0.47 1.3 13

CLS and
line shape

0.47 1.3 13

aNormalized amplitude from normalized CLS, unitless, not rad/ps.
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noise ratio. A growing function can be employed to simplify
highly overlapping spectra by narrowing the line shapes. Of
particular interest here is apodization with a decaying func-
tion along the �� axis. In many 2D-IR vibrational echo ex-
periments, the �m axis is obtained by detecting the hetero-
dyned vibrational echo wave packet through a
monochromator using an IR array detector.46,49 Taking the
spectrum of the wave packet experimentally performs the
necessary Fourier transform to give the �m axis. There is no
interferogram. This axis is referred to as the �m axis because
it is obtained with the monochromator. It corresponds to the
�3 axis in 2D-NMR. At each frequency along the �m axis
where there is signal, an interferogram is recorded by scan-
ning the time delay � between the first and second pulses.
Therefore, the numerical Fourier transforms are applied to
multiple one-dimensional interferograms, corresponding to
the same type of data processing used in one-dimensional
NMR.

The interferograms for the �� axis need to be scanned to
sufficiently long � so that they decay to zero to avoid Fourier
transform artifacts. A good deal of time consuming data col-
lection is required to obtain good signal-to-noise ratios at
long �. If the interferograms are simply truncated at short
time, the Fourier transforms will contain high frequency ar-
tifacts.

If the �� axis interferogram is multiplied by a decaying
function, it can be numerically taken to zero smoothly at a �
that is short compared to the complete decay of the interfero-
gram. This avoids Fourier transform artifacts, but it also dis-
torts the 2D-IR spectrum. Multiplying by a decaying func-
tion will produce an artificially broadened spectrum, while
multiplying by an increasing function will produce an artifi-
cially narrowed spectrum along the �� axis. If accurate line
shapes are important for extraction of the FFCF, then
apodization can only be used with a deconvolution procedure
to try to recover the true line shapes. However, as we will
show here, apodization along the �� axis does not change the
CLS even though the line shapes change a good deal. There-
fore, the FFCF can be obtained in the same manner as de-
scribed above even if �� axis apodization is employed.

To test the influence of apodization on the CLS, response
function calculations are performed to obtain the Tw depen-
dence of the CLS with and without apodization. In the re-
sponse function calculations, two Fourier transforms are per-
formed to obtain the 2D frequency domain spectrum. The
Fourier transform for t1 �time between the first and second
pulses, �� gives the �� axis, and the Fourier transform for t3

�time after the third pulse� gives the �m axis. In the calcula-
tions, the t3 Fourier transform is performed, which is the
equivalent in the experiment of using the monochromator to
obtain the �m axis. However, the apodization function is ap-
plied to the t1 interferograms, and then the t1 Fourier trans-
forms are performed. This is the equivalent to experimentally
collecting the interferograms at each �m, applying an
apodization function to the experimental interferograms, and
then Fourier transforming.

As a first example, a two sided exponential decay cen-
tered at �=0 is used as the apodization function. The FFCF is
that of the HRP red state used to produce the 2D spectra

shown in Figs. 1�a� and 1�b�. The parameters are given in
Table I HRP red experiment. In Fig. 3�a�, the positive time
portion interferogram �rephasing scan� at one �m is plotted
before �small dashes� and after �solid� applying apodization.
The exponential function, exp�−t1 /�, with =1, is also plot-
ted �large dashes�. �The negative time portion of the inter-
ferogram, the nonrephasing scan, which is not shown, is
apodized by the other side of the two sided exponential.� The
same function is applied to the rephasing and nonrephasing
interferograms to avoid possible distortion of the absorptive
line shape because the ratio of the rephasing and nonrephas-
ing signal determines the shape of 2D-IR spectrum. As can
be seen in the figure, apodization changes the interferogram
a great deal although there is no change in the frequency of
the oscillations. Figure 3�b� shows the resulting 2D spectrum
with apodization. The spectrum is substantially broadened,
as can be seen by comparison to Fig. 1�a�, which is calcu-
lated with the same FFCF at the same Tw but without
apodization. The broadening only occurs along the �� axis
because apodization was only applied to the interferograms
that arise from scanning t1, the time in the first coherence
period �time between pulses 1 and 2, ��. The �m axis is
unaffected. Figure 3�d� shows the result of using an increas-
ing function for apodization, =−3. The spectrum is nar-
rowed compared to the spectrum without apodization �Fig.
1�a��.

Before calculating the CLS of the apodized 2D-IR spec-
tra, the effect of apodization on the phasing process needs to

FIG. 3. �a� HRP-CO red state interferogram at a single �m �short dashes�.
Apodization function—decaying exponential �long dashes�. Apodized inter-
ferogram �solid curve�. �b� 2D-IR spectrum after apodization along the ��

axis with a decaying biexponential. The spectrum is broadened compared to
Fig. 1�a�. �d� 2D-IR spectrum after apodization along the �� axis with an
increasing biexponential. The spectrum is narrowed compared to Fig. 1�a�.
�c� Demonstration that apodization does not interfere with phasing using the
projection theorem, see text.
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be addressed. In real experiments, there are distortion to the
2D spectra caused by errors in knowing the exact t1=0 po-
sition, chirp, and the exact time between pulse 3 and the
local oscillator pulse used for heterodyne detection.46,49 The
dual-scan method is used to produce 2D line shapes that are
mainly absorptive by adding the rephasing and nonrephasing
spectra.37 To determine the correct phase correction factors,
frequency resolved pump-probe spectra are used. The projec-
tion theorem38 states that the frequency resolved pump-probe
spectrum should be equal to the projection of the 2D-IR
vibrational echo spectrum onto the �m axis. The projection is
obtained by integrating the 2D-IR spectrum along the ��

axis. Apodization is applied to the interferograms prior to
Fourier transformation and phase correction. Therefore, it is
important that apodization does not change the projection of
the 2D-IR spectrum onto the �m axis. In fact, apodization
does not change the projection because it only affects the
spectrum along ��. An example is given in Fig. 3�c�. The
solid line is the projection of the data in Fig. 1�a� �no
apodization� and the two sets of points �square and triangles�
are the projections of the apodized spectra given in Figs. 3�b�
and 3�d�. The three projections are indistinguishable even
though the three 2D-IR spectra are very different.

To demonstrate the influence of apodization on the CLS,
calculations were performed using the FFCFs of the red and
blue states of HRP �see Table I�. In addition to obtaining the
Tw dependent CLS, three other methods used to characterize
the time evolution of 2D-IR spectra are obtained with and
without apodization. These are the dynamic linewidth,1,13 the
ellipticity,29 and the eccentricity,30 which are defined below.

Figure 4�a� shows CLS calculations using the FFCFs of
the HRP red and blue states. The upper curve is for the blue
state, and the lower curve is for the red state. Two apodiza-
tion functions are used, exp�−t1 /�, with =1 �decaying ex-

ponential� and =−3 �increasing exponential�. In all the
parts of Fig. 4, squares are without apodization, circles are
with decaying apodization, and diamonds are with increasing
apodization. The open symbols are for the HRP red state, and
the closed symbols are for the HRP blue state. As can be
clearly seen in Fig. 4�a�, apodization does not influence the
Tw dependence of the CLS. Although the differences are very
small, the squares, diamonds, and circles do not overlap ex-
actly. This difference is not caused by the apodization but by
the short time approximation because applying an apodiza-
tion function changes the length of the interferogram. The
accelerated decay of interferogram by apodization reduces
the error caused by short time approximation and the pro-
longed interferogram increases the error �see Appendix for
details�. This change in amplitude in CLS is corrected using
the method involving the IR spectrum as described in Sec. II.
Therefore, the FFCF can be extracted even though apodiza-
tion is applied to the data. Apodization along the �� axis
changes the shapes of the 2D spectra, but it does not change
the position of the center point �maximum value� at each �m.
The increasing apodization narrows peaks �see Fig. 3�d��.
This type of apodization may be useful in congested spectra
with overlapping off-diagonal peaks along the �� axis. The
results show that it may be possible to separate peaks and
determine their FFCFs with apodization and CLS.

Figure 4�b� shows plots of the dynamic linewidths.1,13

The dynamic linewidth is a cut through the data at the center
of the 0-1 portion of the spectrum, parallel to the �� axis, and
projected onto the �� axis. The FWHMs of the projected line
shapes are plotted. It is clear from the curves that apodization
has a dramatic influence on the dynamic linewidth. This is to
be expected because apodization changes the shapes of the
2D spectra along the �� axis. Therefore, it changes the
FWHM of the projection on to the �� axis.

The ellipticity29 and the eccentricity30 are two other ob-
servables that are sensitive to spectral diffusion. Both of
them use diagonal and antidiagonal widths of the 2D-IR
spectra. The diagonal width is the standard deviation of the
cut through the 2D spectrum along the diagonal. The antidi-
agonal width is the standard deviation of the cut perpendicu-
lar to the diagonal through the center of the 0-1 portion of
the spectrum. Using the same procedure applied above to
show the relationship between the CLS and the FFCF, the
direct relationships between the ellipticity and the eccentric-
ity can be derived. The derivation has been published for the
ellipticity29 but the procedure for obtaining the full FFCF
including the homogeneous contribution and the true ampli-
tudes of each component was not developed. The ellipticity29

�El� and the eccentricity30 �Ec� are given by

El�Tw� =
�D

2 �Tw� − �AD
2 �Tw�

�D
2 �Tw� − �AD

2 �Tw�
, �18�

Ec�Tw� =�1 −
�AD

2 �Tw�
�D

2 �Tw�
. �19�

Figures 4�c� and 4�d� show the results of calculating the el-
lipticity and the eccentricity without apodization and with
the two apodization functions. Like the dynamic linewidth,

FIG. 4. Calculations using the FFCFs of the HRP red and blue states. Two
apodization functions are used, exp�−t1 /�, with =1 �decaying exponen-
tial� and =−3 �increasing exponential� along the �� axis. In all parts,
squares are without apodization ��,��, circles are with decaying apodiza-
tion ��,��, and diamonds are with increasing apodization ��,��. The open
symbols are for the HRP red state, and the closed symbols are for the HRP
blue state. �a� The CLS is unaffected by apodization. �b� Dynamic line
widths. �c� Ellipticity. �d� Eccentricity. The dynamic line width, the elliptic-
ity, and the eccentricity are greatly affected by apodization along the �� axis.
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apodization has a substantial affect on both the ellipticity and
the eccentricity.

The important result is that only the CLS is immune to
apodization along the �� axis. Therefore, it is possible to
improve signal-to-noise ratios and reduce data collection
time using a decaying apodization function, or increase reso-
lution and peak separation using an increasing apodization
and still extract the FFCF in a simple manner using the CLS.
There are several limitations on apodization that need to be
kept in mind if the CLS is not going to be distorted. First, the
apodization function should be symmetrical around �=0 so
that its effect is the same on the rephasing and nonrephasing
scans. Second, apodization along the �m will change the
CLS. However, if apodization along only �m is performed,
and if the cuts through the 2D spectra are taken parallel to
�m rather than parallel to ��, then the equivalent of the CLS
is obtained, and it is not distorted by �m apodization. The �m

apodization procedure is presented in Appendix 5. However,
apodization along both axes will significantly change the
CLS and prevent the FFCF from being obtained. In the ex-
amples given above, only exponential functions were em-
ployed. In Appendix 4, several other functions are used, and
the generality of using the CLS method to obtain the FFCF
with apodization is demonstrated.

A related issue is the influence of pulse duration on the
CLS. In the examples given above, the experiments were
conducted with pulses that were sufficiently short that their
bandwidths were much wider than the absorption spectra in-
cluding the 1-2 transitions. Therefore, the 2D-IR spectra are
not affected by the finite pulse duration. However, for vibra-
tions with broad spectra, such as water, the 2D-IR vibrational
echo spectra can be changed by the finite bandwidth of the
pulses.13,50 Provided that the pulses are reasonably short, that
is, the band width is sufficient to span the spectrum even if it
is not vastly wider than the spectrum, the finite pulse dura-
tion �bandwidth� has a negligible effect on the CLS. This is
also true and has been demonstrated for the ellipticity.29

V. CONCLUDING REMARKS

We have presented a new approach for extracting the
frequency-frequency correlation function from 2D-IR vibra-
tional echo spectra. The direct relationship between the CLS
and the Tw dependent portion of the normalized FFCF was
derived analytically using a short time approximation. A de-
tailed procedure to obtain the full FFCF from the 2D-IR
vibrational echo and absorption spectra, including the homo-
geneous contribution and the absolute rather than relative
amplitudes of the inhomogeneous components, was delin-
eated. Tests of the procedures using known FFCFs were
given that show that the CLS method works very well in
cases in which the lines are substantially inhomogeneously
broadened and in cases in which the lines are almost homo-
geneously broadened. The usefulness of the method is that
the full FFCF can be obtained without using complex re-
sponse function calculations to fit the 2D-IR vibrational echo
line shapes. The CLS method has recently been applied to
water and concentrated salt solutions.46

The usefulness of the CLS method is further enhanced
by its insensitivity to apodization of the interferogram ob-
tained for the �� axis ��1 axis�. The �� axis is the only axis
that produces an interferogram in 2D-IR vibrational echo ex-
periments in which the heterodyned detected signal is fre-
quency resolved using a monochromator. It was demon-
strated that apodization does not change the FFCFs extracted
using CLS, although apodization has a major influence on
the 2D-IR lineshapes. This is in contrast to other methods
that can be used to obtain the FFCF such as the ellipticity.29

In 2D-IR vibrational echo experiments, apodization can be
used to reduce data collection times, improve signal-to-noise
ratios, and increase spectral resolution.
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APPENDIX: DETAILS OF THE CLS METHOD

The decrease of the initial CLS value from 1 is caused
by a homogeneous contribution to the 2D spectra. However,
such a decrease can also be caused by errors introduced by
the short time approximation. The short time approximation
effectively results in the transfer of part of the inhomoge-
neous contribution that undergoes fast spectral diffusion into
the homogeneous component. Three methods were used to
analyze the CLS with the results presented in Tables I and II.
The third method, which includes a response function analy-
sis of the absorption line, was shown to be quite accurate.
The second method is also accurate if there are slow inho-
mogeneous components, but no fast inhomogeneous compo-
nent. Below, numerical simulations are used to separately
delineate the effect of a homogeneous contribution and the
errors induced by the short time approximation. The linear
relationship between the Tw=0 reduction of the CLS from 1
and the homogeneous contribution is examined numerically.
It is found that the initial value of the CLS is related to the
inhomogeneous contribution to the IR absorption linewidth.
The extraction of the FFCF amplitudes and the homogeneous
contribution using the simple division of the IR linewidth
into homogeneous and inhomogeneous parts is shown to be
approximately correct by comparison to the rigorous convo-
lutions that give a Voight function. Furthermore, CLS are
with a variety of different apodization functions, and it is
demonstrated that any function can be used for apodization if
the same function is applied to the rephasing and nonrephas-
ing scans. While apodization along the �� axis was discussed
in the body of the paper, it is shown that apodization along
�m axis produces the same results as that from the apodiza-
tion along the �� axis when the CLS is determined using cuts
parallel to the �m axis.

1. Influence of the short time approximation

The short time approximation or fast dephasing time ap-
proximation has usually been applied to broad absorption
lines.24,29 A broadband in the frequency domain corresponds
to fast decay in the time-domain signal. Therefore, including
only the first or second order terms of a Taylor expansion
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may be sufficient to describe the dephasing during the coher-
ence periods. For example, the hydroxyl stretch of water has
a very wide absorption line. However, many infrared transi-
tions have narrow peaks that are nonetheless inhomoge-
neously broadened and have Gaussian line shapes. The CO
stretch of the HRP protein, which was analyzed in detail
above, has a narrow but inhomogeneously broadened absorp-
tion spectrum. Even for broad lines, it is not clear to what
extent the short time approximation mixes a very fast inho-
mogeneous component with a homogeneous contribution.
Therefore, it is important to examine the application of the
short time approximation.

Here deviations of the CLS from an input normalized
FFCF are determined for various cases. For simplicity, a
single exponential function with one time constant and one
amplitude is used as the FFCF, and homogeneous broadening
is not included. Because there is no homogeneous broaden-
ing, reductions in the initial value from 1 are only caused by
the short time approximation. A 2D-IR spectrum is calcu-
lated from a given FFCF. Then, the CLS obtained from the
calculated 2D-IR spectrum is used to determine the time con-
stant and relative amplitude. For this study, the absolute am-
plitude is not needed because, with a single inhomogeneous
term in the FFCF, the relative amplitude can be directly com-
pared to 1, which is the correct value of the relative ampli-
tude for all FFCFs with a single component. A time standard
is required to compare the results from different FFCFs to
assign the � value in the exponential decay as fast or slow.
The free induction decay �FID� is a good time standard for
systems with different dynamics. The FID time is defined as
the time to decay to the half maximum of the envelope of
interferogram. This envelope can be obtained by Fourier
transforming the IR absorption spectrum. Therefore, in a real
experiment, it is not necessary to know the FFCF. A time
constant obtained by fitting the CLS can be compared to the
Fourier transform of the IR absorption spectrum.

To compare the results from systems with dynamically
different FFCFs, the ratio of the time constant to the FID
time is used as the horizontal axis. The amplitude is fixed at
�=5 rad/ps in the FFCF, and a range of � values is used. For
each � value, the spectrum is calculated and the FID deter-
mined. The ratio � /FID was varied from 0.13 to 10. For each
ratio �a particular ��, more than 20 2D-IR spectra with vari-
ous Tw points were calculated from the FFCF. The Tw=0
values obtained by fitting the resulting CLS obtained from
the 2D spectra are plotted in Fig. 5�a�. Motionally narrowed
cases with ���1 are not considered as discussed above. The
smallest � /FID=0.49 plotted corresponds to ��=1. The in-
homogeneous component at � /FID=1 shows a 30% reduc-
tion from the correct value of 1. As the ratio increases, the
deviation from 1 decreases. At � /FID=5, the error is only
10%. A 10% error in the amplitude in many cases is within
experimental error. When the ratio is very large compared to
1, the error becomes negligibly small. It is for this reason
that the slowest components of the FFCFs discussed in the
body of the paper were taken to be accurate and used in
determining other parameters.

For a given � /FID ratio, it may be possible to know and
correct for the error introduced by the short time approxima-

tion in the amplitude. In Fig. 5�b�, the ratio is fixed at
� /FID=1, and the amplitude is varied from 1 to 10. The
results show that the error, �30%, is independent of the
amplitude. Because the FID is known from the absorption
spectrum and � is known from fitting the CLS, Fig. 5�b� can
be used to correct the relative amplitude. However, as dis-
cussed in the body of the paper and shown below, the ho-
mogenous component also causes a decrease of the initial
value of the CLS.

2. Influence of a homogeneous component

CLS is inversely proportional to the normalized FFCF,
C1

N�Tw�, in the absence of a homogeneous component. Here,
the effect of a homogeneous component is examined through
numerical calculations. An FFCF with a homogeneous com-
ponent and one inhomogeneous component, C�t�=��t� /T2

+�ln
2 exp�−t /�ln�, is used. The homogeneous line width is

Wh=1/
T2. The inhomogeneous component is fixed with
�ln=1.9 rad/ps and �ln=25 ps. This �ln is sufficiently long
that the error in the amplitude of the inhomogeneous contri-
bution introduced by the short time approximation is very
small. T2 was varied from 25 to 0.15 ps to generate FFCFs
that gave rise to Wh /FWHM with values ranging from 0.05
to 0.9. FWHM is the full width at half maximum of the total

FIG. 5. �a� The relative amplitude vs � /FID points, for a strictly inhomo-
geneously broadened FFCF. � is the exponential decay constant in the FFCF
and FID is the free induction decay time �see text�. At smaller values of
� /FID than shown, the line is homogeneously broadened. For � /FID�5, the
error is �10%. �b� The relative amplitude is plotted for various absolute
amplitudes with � /FID=1. The constant value at various amplitudes shows
that the error in amplitude caused by the short time approximation is deter-
mined only by the ratio � /FID.
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absorption line. The Tw dependent CLS were determined
from the 2D spectra calculated from the different FFCFs
�different homogeneous contributions� and are plotted in Fig.
6�a�. As shown in the figure, the effect of the homogeneous
component is to decrease the initial amplitude from 1. The
top curve in Fig. 6�a� has the smallest homogeneous contri-
bution, T2=25 ps, and the bottom curve is for T2=0.15 ps. In
the 2D-IR vibrational echo spectra, the increasing amount of
the homogeneous contribution results in less elongation
along the diagonal.

To check the relationship between decrease in the Tw

=0 value of the CLS from 1 and the magnitude of the ho-
mogeneous contribution, the decrease from 1 is plotted as a
function of the ratio Wh /FWHM in Fig. 6�b�. The points are
calculated from the CLS and the homogeneous and total line-
widths using the FFCFs. The line with slope 1 was drawn to
emphasize the almost linear one-to-one relationship between
these quantities throughout the entire change of homoge-
neous contributions. This relationship demonstrates that, for
systems in which the inhomogeneous terms in the FFCF de-
cay slowly �� /FID� �5� so that there is little error in the
relative amplitude of the inhomogeneous terms, the homoge-
neous and inhomogeneous components of the FFCF can be

obtained from the CLS and the absorption linewidth without
using response function calculations of the absorption line
shape.

3. Determination of inhomogeneous component from
the CLS

In addition to the homogeneous contribution to the ab-
sorption linewidth discussed in Appendix 2, there is also the
inhomogeneous portion of the total linewidth, Wln. In the
simple methods, CLS and linewidth, for determining the ab-
solute amplitudes and the homogeneous T2, we employed the
relationship,

 WG

FWHM
�2

+
WL

FWHM
� 1, �A1�

where FWHM is the full width at half maximum of the ab-
sorption line and WG and WL are the FWHM of the Gaussian
�inhomogeneous� and Lorentzian �homogeneous� compo-
nents of the line. WG is 2.35 times the standard deviation of
the Gaussian and WL=1/
T2. The relation given in Eq. �A1�
is not strictly correct because the total linewidth is deter-
mined by the convolution of the Gaussian and Lorentzian
contributions to give a Voight line shape.

Because the Voight function has no exact analytical
form, a very accurate approximation for the Voight function
is used51 to demonstrate that the relationship in Eq. �A1� is
quite accurate. The half-width at half maximum of Voight
function can be expressed with very good accuracy as51

b1/2�a� = a + �ln 2�1/2 exp�− 0.6055a + 0.718a2

− 0.0049a3 + 0.000 136a4� , �A2�

with a��ln 2�1/2WL /WG. b1/2�a�, in normalized units, is re-
lated to the FWHM of the Lorentizian and Gaussian compo-
nents of the Voight function by

b1/2�a� = a
FWHM

WL
= �ln 2�1/2FWHM

WG
. �A3�

Then, Eq. �A1� can be rewritten as

a

b1/2�a�
+  �ln 2

b1/2�a�
�2

� 1. �A4�

To test the quality of Eq. �A1�, Eq. �A4� is used to evalu-
ate Eq. �A1� for a range of WL /WG. The results are plotted in
Fig. 7. WL /WG�0 is the almost inhomogeneous case for
which the line shape is approximately Gaussian. The
WL /WG�20 is the almost homogeneously broadened case
for which the line shape is approximately Lorentzian. As
shown in the figure, Eq. �A1� is satisfied very well for quite
a wide range of WL /WG.

4. CLS is independent of the apodization function

In the body of the paper, biexponential functions were
used to demonstrate the effects of apodization along the ��

axis. The results from CLS are not changed by the different
apodization functions and extents of apodization. To show
this, numerical simulations were used.

FIG. 6. �a� Tw dependent CLS curves with increasing homogeneous contri-
bution. The fraction of homogeneous linewidth to FWHM was increased
from 0.05 to 0.9, with the fraction as �top to bottom� 0.05, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, and 0.9. The initial values of these curves show that a
linear relationship holds between initial amplitude and the fraction of homo-
geneous width in the total linewidth. �b� The initial amplitudes �squares� of
the CLS �Tw=0� are plotted vs the fraction of the homogeneous contribution
to the absorption linewidth. In addition, a line of slope of 1 is shown to
demonstrate the virtually linear relationship between the initial value of the
CLS and the homogeneous fraction of the line.
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The influence of changing the apodization function and
the extent of apodization is tested using three apodization
functions, each centered at �=0. They are a two-sided expo-
nential decay, a Gaussian and a “hat” function. The hat func-
tion is a constant that extends from zero to the peak of the
interferogram envelope and then decays to zero as a Gauss-
ian at positive times, with the identical shape at negative
times. The FFCF used to calculate the 2D response is the
single exponential function used in Appendix 1. Among the
various FFCFs presented in Fig. 5, three FFCFs were se-
lected as a model for fast �� /FID=0.5�, intermediate
�� /FID=1�, and slow �� /FID=5� dynamics. The extent of
apodization was varied from 1/2 to 1/10 of the initial inter-
ferogram. The time to decay to half maximum of the inter-
ferogram was calculated before the second Fourier transform
along the �� axis. Then the time constant of each apodization
function was set such that the interferogram multiplied by
the apodization function reached half maximum at 1/2, 1 /3,
1 /4, 1 /5, and 1/10 of the time for the interferogram without
apodization to reach half maximum. 2D spectra with differ-
ent apodization functions and different decays were calcu-
lated, and the FFCFs were extracted from these spectra using
CLS.

Figure 8�a� shows the results of the calculations for the
three FFCFs with three apodization functions �two-sided ex-
ponential decay �squares�, Gaussian �diamonds�, and hat
function �circles�� and six different extents of apodization.
On the horizontal axis, 1 is no apodization. As shown in the
figure, there is almost no changes in the time constants ex-
tracted with CLS from the apodized 2D spectra even through
there are extensive changes in the shapes of the spectra.
Short time approximation causes some change in the initial
amplitude, but as discussed in the body of the paper, the
amplitudes can be accurately obtained using the CLS plus
fitting the linear line shape. Even when the interferogram is
forced to decay ten times faster than in the absence of
apodization, the CLS gives an accurate determination of the
FFCF. The 1/10 apodization can reduce the data collection
time in an experiment tremendously. Apodization of the CLS
along the �� axis is insensitive to the function form of the
apodization function and the extent of apodization.

Enhancement of resolution along the �� axis is also
demonstrated. Two apodization functions are used, a rising
two-sided exponential and a shifted Gaussian function,
exp�a� /T2

*−b�� /T2
*�2�. The shifted Gaussian function is com-

posed of the rising exponential function, exp�a� /T2
*�, to com-

pensate the decay of interferogram and the Gaussian decay
function, exp�−b�� /T2

*�2�, to make the interferogram decay to
zero. T2

* is the FID of unprocessed interferogram. However,
a, b, and T2

* are used as adjustable parameter to achieve the
desired resolution.52 This function is used on both the
rephasing and nonrephasing interferograms.

First, the simple rising exponential functions with vari-
ous time constants are applied for resolution enhancement.
Because the main purpose for applying a rising exponential
function is to reduce the linewidth, the ratio between the
linewidth before and after the apodization was used as a
measure of the extent of apodization. This ratio is calculated
from the dynamic linewidth at the shortest Tw. Figure 8�b�
shows the results of the calculations. The horizontal axis is
the reduction of the linewidth along the �� axis. The calcu-
lations are for the three FFCFs used in Fig. 8�a�. The results
show that the FFCF decay constant can be extracted with the

FIG. 7. Equation �A1� is plotted as a function of WL /WG. The almost con-
stant value of 1 demonstrates the validity of the approximation used to
obtain the homogeneous contribution and the absolute amplitudes of the
FFCF using the simple CLS and linewidth methods.

FIG. 8. Time constants calculated with CLS before and after apodization
along the �� axis. Three different FFCFs with � /FID=0.5, 1, and 5, with
time constants of 0.27, 0.51, and 2.5, bottom to top, respectively, were used.
�a� Three different decay functions centered on �=0, two-sided exponential
decay �squares�, Gaussian �diamonds�, and hat function �circles�, were used.
The time for the interferogram to decay to half maximum is varied from 1
�no apodization� to 1 /10. The decay constants extracted with CLS are vir-
tually unchanged by apodization along the �� axis. �b� Time constants ob-
tained with CLS after increasing apodization with a two-sided exponential
function �exponential rising function� are unchanged. The horizontal axis is
the ratio between the dynamic linewidth before and after apodization. 0.5 is
a reduction in the width along the �� axis by a factor of 2.
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CLS. For each decay constant, the line stops at the point
where further narrowing by increased apodization produces
side lobes along the �� axis on either side of the 2D band.
These side lobes do not change the CLS, but they could
interfere with increased resolution.

Second, the shifted Gaussian function is used for resolu-
tion enhancement by reducing the extended wing of a spec-
trum without changing the FWHM. Similar results can be
achieved by the sine bell function.32 To clearly show the
effect of the shifted Gaussian function, the 2D-IR spectrum
of phenol in CCl4 was used because it has an almost Lorent-
zian line shape. Parameters for calculating 2D-IR spectrum
are listed in Table II. In Fig. 9�a�, the 2D-IR spectrum at
Tw=0.2 ps without apodization is shown. It has long wings
along both axes. 2D-IR spectrum after apodization along the
�� axis is presented in Fig. 9�b�. The long wing along the ��

axis is reduced. To clearly show the reduction of the wing
along the �� axis, slices cut through the �m center frequency
projected onto the �� axis are shown in Fig. 9�c�. The solid
curve is the spectrum without apodization and the dashed
curve is that with apodization. The shifted Gaussian function
eliminates the extended Lorentzian wing without changing
the FWHM of spectrum. Finally, Fig. 9�d� shows that the
CLS before �squares� and after �circles� apodization has not
change.

5. Apodization along the �m axis

In the body of the paper, we discuss apodization along
the �� axis because, frequently, data are collected through a

monochromator to give the second coherence period Fourier
transformed axis, �m. A two-dimensional interferogram can
be obtained by scanning pulses 1 and 2 for first coherence
period and scanning the local oscillator for second coherence
periods. The resulting two-dimensional interferogram is Fou-
rier transformed for each coherence period to obtain the
2D-IR spectrum.32 With this data collection method,
apodization can be applied to the �m axis rather than the ��

axis. An increasing function apodization along the �m axis
can help to reduce the destructive interference between the
positive 0-1 transition band and the negative 1-2 transition
band. If necessary, apodization along the �m axis can be
accomplished even though a monochromator is used for the
�m axis. The time-frequency interferogram obtained using
the monochromator can be converted into a time-time inter-
ferogram using inverse Fourier transformation, and an
apodization function can be applied along the �m axis. Then
2D-IR spectrum with apodization along the �m axis can be
obtained through double Fourier transformation. Response
function with apodization along the �m axis was calculated
to see the effect of apodization along the �m axis. The cal-
culated 2D-IR spectra show the same effects as displayed in
Figs. 3�b� and 3�d� but the changes are along the �m axis
rather than along the �� axis.

When apodization is applied along the �m axis, CLS is
obtained by taking cuts through the 2D spectrum parallel to
the �m axis rather than the �� axis. Resulting CLS shows
inverted behavior relative to the �� axis CLS. The �m CLS
has a center line slope close to 45° at short Tw and the line
becomes horizontal at long Tw. As can be proved easily using
Eq. �16�, the CLS obtained through cuts parallel to the �m

axis is directly proportional to normalized FFCF. The result-
ing CLS apodized along the �m axis shows the same behav-
ior as the �� axis CLS apodized along �� axis. Apodization
along the axis used to calculate the CLS does not change the
CLS. Apodization along the other axis does change it. There-
fore, it is possible to apodize along either axis, but not both.
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